JJ Allaire — written Jul 15, 2014 — source
The RcppParallel package includes
high level functions for doing parallel programming with Rcpp. For example,
the parallelReduce
function can be used aggreggate values from a set of
inputs in parallel. This article describes using RcppParallel to parallelize
the inner-product
example previously posted to the Rcpp Gallery.
First the serial version of computing the inner product. For this we use
a simple call to the STL std::inner_product
function:
#include <Rcpp.h>
using namespace Rcpp;
#include <algorithm>
// [[Rcpp::export]]
double innerProduct(NumericVector x, NumericVector y) {
return std::inner_product(x.begin(), x.end(), y.begin(), 0.0);
}
Now we adapt our code to run in parallel. We’ll use the parallelReduce
function to do this. This function requires a “worker” function object
(defined below as InnerProduct
). For details on worker objects see the
parallel-vector-sum
article on the Rcpp Gallery.
// [[Rcpp::depends(RcppParallel)]]
#include <RcppParallel.h>
using namespace RcppParallel;
struct InnerProduct : public Worker
{
// source vectors
const RVector<double> x;
const RVector<double> y;
// product that I have accumulated
double product;
// constructors
InnerProduct(const NumericVector x, const NumericVector y)
: x(x), y(y), product(0) {}
InnerProduct(const InnerProduct& innerProduct, Split)
: x(innerProduct.x), y(innerProduct.y), product(0) {}
// process just the elements of the range I've been asked to
void operator()(std::size_t begin, std::size_t end) {
product += std::inner_product(x.begin() + begin,
x.begin() + end,
y.begin() + begin,
0.0);
}
// join my value with that of another InnerProduct
void join(const InnerProduct& rhs) {
product += rhs.product;
}
};
Note that InnerProduct
derives from the RcppParallel::Worker
class. This
is required for function objects passed to parallelReduce
.
Note also that we use the RVector<double>
type for accessing the vector.
This is because this code will execute on a background thread where it’s not
safe to call R or Rcpp APIs. The RVector
class is included in the
RcppParallel package and provides a lightweight, thread-safe wrapper around R
vectors.
Now that we’ve defined the function object, implementing the parallel inner
product function is straightforward. Just initialize an instance of
InnerProduct
with the input vectors and call parallelReduce
:
// [[Rcpp::export]]
double parallelInnerProduct(NumericVector x, NumericVector y) {
// declare the InnerProduct instance that takes a pointer to the vector data
InnerProduct innerProduct(x, y);
// call paralleReduce to start the work
parallelReduce(0, x.length(), innerProduct);
// return the computed product
return innerProduct.product;
}
A comparison of the performance of the two functions shows the parallel version performing about 2.5 times as fast on a machine with 4 cores:
x <- runif(1000000)
y <- runif(1000000)
library(rbenchmark)
res <- benchmark(sum(x*y),
innerProduct(x, y),
parallelInnerProduct(x, y),
order="relative")
res[,1:4]
test replications elapsed relative 3 parallelInnerProduct(x, y) 100 0.023 1.000 2 innerProduct(x, y) 100 0.099 4.304 1 sum(x * y) 100 0.396 17.217
You can learn more about using RcppParallel at https://rcppcore.github.com/RcppParallel.
tags: parallel
Tweet