Creating as and wrap for sparse matrices

Dirk Eddelbuettel and Binxiang Ni — written Aug 5, 2013 — updated Oct 18, 2018 — source

An earlier article discussed sparse matrix conversion but stopped short of showing how to create custom as<>() and wrap() methods or functions. This post started to close this gap.

We will again look at sparse matrices from the Matrix package for R, as well as the SpMat class from Armadillo. At least for now we will limit outselves to the case of double element types. These uses the sp_mat typedef which will be our basic type for sparse matrices at the C++ level.

Nota bene: At the time of the update of the post, very similar code (by Romain) has just been added to the SVN repo for RcppArmadillo; it should appear in the next regular CRAN release. Because we cannot redefine method with the same signature, we renamed the code presented here as_<>() and wrap_(). Of course, for conversion not already present in the package, names without underscores should be used instead. My thanks to Romain for improving over the initial versions I wrote in the first version of this post.

Nota bene 2: As of RcppArmadillo release 0.3.920.1 (based on Armadillo 3.920.1) there is also a new constructor taking vectors rowind, colptr and values.

Nota bene 3: Since RcppArmadillo release 0.7.960.1.1, a fulle eleven types of sparse matrices on the R side are supported. You can pass these directly to RcppArmadillo, and each will be converted to an arma::sp_mat by a corresponding function. More details are in the sparse Matrix vignette.

First, we look at the as method.

 #include <RcppArmadillo.h>
 // [[Rcpp::depends(RcppArmadillo)]]

 using namespace Rcpp;

 namespace Rcpp {

     // converts an SEXP object from R which was created as a sparse
     // matrix via the Matrix package) into an Armadillo sp_mat matrix
     //
     // NB: called as_() here as a similar method is already in the
     //     RcppArmadillo sources
     //

     // The following as_() only applies to dgCMatrix.
     // For other types of sparse matrix conversion,
     // you might want to check the source code of RcppArmadillo.
     template <typename T> arma::SpMat<T> as_(SEXP sx) {

       // Rcpp representation of template type
       const int RTYPE = Rcpp::traits::r_sexptype_traits<T>::rtype;

       // instantiate S4 object with the sparse matrix passed in
       S4 mat(sx);
       IntegerVector dims = mat.slot("Dim");
       IntegerVector i = mat.slot("i");
       IntegerVector p = mat.slot("p");
       Vector<RTYPE> x = mat.slot("x");

       // create sp_mat object of appropriate size
       arma::SpMat<T> res(dims[0], dims[1]);

       // In order to access the internal arrays of the SpMat class
       res.sync();

       // Making space for the elements
       res.mem_resize(static_cast<unsigned>(x.size()));

       // Copying elements
       std::copy(i.begin(), i.end(), arma::access::rwp(res.row_indices));
       std::copy(p.begin(), p.end(), arma::access::rwp(res.col_ptrs));
       std::copy(x.begin(), x.end(), arma::access::rwp(res.values));

       return res;
     }

 }

If you are interested in the as<>() for more types of sparse matrix, you might want to take a look at the source code

Next, we look at the corresponding wrap() method. Here the sp_mat Armadillo object is wrapped into a dgCMatrix.

 namespace Rcpp {

     // convert an Armadillo sp_mat into a corresponding R sparse matrix
     // we copy to STL vectors as the Matrix package expects vectors whereas the
     // default wrap in Armadillo returns matrix with one row (or col)
     //
     // NB: called wrap_() here as a similar method is already in the
     //     RcppArmadillo sources
     //
     template <typename T> SEXP wrap_(const arma::SpMat<T>& sm) {
       const int  RTYPE = Rcpp::traits::r_sexptype_traits<T>::rtype;

       // In order to update internal state of SpMat object
       sm.sync();
       IntegerVector dim = IntegerVector::create( sm.n_rows, sm.n_cols );

       // copy the data into R objects
       Vector<RTYPE> x(sm.values, sm.values + sm.n_nonzero ) ;
       IntegerVector i(sm.row_indices, sm.row_indices + sm.n_nonzero);
       IntegerVector p(sm.col_ptrs, sm.col_ptrs + sm.n_cols+1 ) ;

       std::string klass = "dgCMatrix";

       S4 s(klass);
       s.slot("i")   = i;
       s.slot("p")   = p;
       s.slot("x")   = x;
       s.slot("Dim") = dim;
       return s;
     }

 }

We can now illustrate this with a simple example. Note that the compiler will use the methods as<>() and wrap() from the package rather than the ones depicted here. However, the ones shown here compile as well and are functionally identical.

// [[Rcpp::export]]
arma::sp_mat doubleSparseMatrix(arma::sp_mat m) {
    Rcpp::Rcout << m << std::endl;  // use the i/o code from Armadillo
    arma::sp_mat n = 2*m;
    return n;
}

First, we create a sparse matrix. We then the function we just showed to to a minimal (and boring) transformation: we double the values of the matrix. The key really in the seamless passage of matrix A from R down to the C++ code where it is accessed as m, and the return of the new matrix n which becomes B at the R level.

suppressMessages({
  library(methods)
  library(Matrix)
})
i <- c(1,3:8)              # row indices
j <- c(2,9,6:10)           # col indices
x <- 7 * (1:7)             # values
A <- sparseMatrix(i, j, x = x)
A
8 x 10 sparse Matrix of class "dgCMatrix"
                             
[1,] . 7 . . .  .  .  .  .  .
[2,] . . . . .  .  .  .  .  .
[3,] . . . . .  .  .  . 14  .
[4,] . . . . . 21  .  .  .  .
[5,] . . . . .  . 28  .  .  .
[6,] . . . . .  .  . 35  .  .
[7,] . . . . .  .  .  . 42  .
[8,] . . . . .  .  .  .  . 49
B <- doubleSparseMatrix(A) # this will print A from C++
[matrix size: 8x10; n_nonzero: 7; density: 8.75%]

     (0, 1)          7.0000
     (3, 5)         21.0000
     (4, 6)         28.0000
     (5, 7)         35.0000
     (2, 8)         14.0000
     (6, 8)         42.0000
     (7, 9)         49.0000
B
8 x 10 sparse Matrix of class "dgCMatrix"
                              
[1,] . 14 . . .  .  .  .  .  .
[2,] .  . . . .  .  .  .  .  .
[3,] .  . . . .  .  .  . 28  .
[4,] .  . . . . 42  .  .  .  .
[5,] .  . . . .  . 56  .  .  .
[6,] .  . . . .  .  . 70  .  .
[7,] .  . . . .  .  .  . 84  .
[8,] .  . . . .  .  .  .  . 98
identical(2*A, B)
[1] TRUE

tags: armadillo  matrix  sparse 

Related Articles