Nino Hardt, Dicko Ahmadou, Benjamin Christoffersen — written Jul 13, 2013 — updated Feb 2, 2020 — source
The Multivariate Normal density function is used frequently for a number of problems. Especially for MCMC problems, fast evaluation is important. Multivariate Normal Likelihoods, Priors and mixtures of Multivariate Normals require numerous evaluations, thus speed of computation is vital. We show dramatic increases in speed by using efficient algorithms, RcppArmadillo, and some extra gain by using OpenMP. The code is based on the latest version of RcppArmadillo (0.9.800.1.0).
While the dmvnorm()
function from the mvtnorm
package is quite popular,
and in an earlier version of this article we demonstrated that an
Rcpp implementation would lead to faster computation.
Peter Rossi, author of bayesm
, called our attention to the bayesm
pure R
implementation which is much faster than dmvnorm()
.
The function dMvn()
is used internally by the mixture of normals model in
bayesm
. It is the matrix-equivalent version of lndMvn
:
dMvn <- function(X,mu,Sigma) {
k <- ncol(X)
rooti <- backsolve(chol(Sigma),diag(k))
quads <- colSums((crossprod(rooti,(t(X)-mu)))^2)
return(exp(-(k/2)*log(2*pi) + sum(log(diag(rooti))) - .5*quads))
}
Translating the vectorized approach into RcppArmadillo,
we precompute the inverse of the Cholesky decomposition of the covariance
matrix ahead of the main loop over the rows of X
.
The loop can easily be parallelized, and the code is easy to read and
manipulate. For instance, the inverse Cholesky decomposition can be put
inside the main loop, if varying covariance matrices are necessary.
It is worth remarking that multiplying with a precomputed inverse of the
Cholesky decomposition of
the covariance matrix is faster but less numerically stable compared to
a backsolve as in the Mahalanobis
function we will define later.
// [[Rcpp::depends("RcppArmadillo")]]
#include <RcppArmadillo.h>
static double const log2pi = std::log(2.0 * M_PI);
// [[Rcpp::export]]
arma::vec dmvnrm_arma_old(arma::mat x,
arma::rowvec mean,
arma::mat sigma,
bool logd = false) {
using arma::uword;
uword const n = x.n_rows,
xdim = x.n_cols;
arma::vec out(n);
arma::mat rooti = arma::trans(arma::inv(trimatu(arma::chol(sigma))));
double rootisum = arma::sum(log(rooti.diag()));
double constants = -(double)xdim/2.0 * log2pi;
for (uword i = 0; i < n; i++) {
arma::vec z = rooti * arma::trans( x.row(i) - mean) ;
out(i) = constants - 0.5 * arma::sum(z%z) + rootisum;
}
if (logd)
return out;
return exp(out);
}
// [[Rcpp::export]]
arma::vec dmvnrm_arma(arma::mat const &x,
arma::rowvec const &mean,
arma::mat const &sigma,
bool const logd = false) {
using arma::uword;
uword const n = x.n_rows,
xdim = x.n_cols;
arma::vec out(n);
arma::mat const rooti = arma::inv(trimatu(arma::chol(sigma)));
double const rootisum = arma::sum(log(rooti.diag())),
constants = -(double)xdim/2.0 * log2pi,
other_terms = rootisum + constants;
arma::rowvec z;
for (uword i = 0; i < n; i++) {
z = (x.row(i) - mean) * rooti;
out(i) = other_terms - 0.5 * arma::dot(z, z);
}
if (logd)
return out;
return exp(out);
}
/* C++ version of the dtrmv BLAS function */
void inplace_tri_mat_mult(arma::rowvec &x, arma::mat const &trimat){
arma::uword const n = trimat.n_cols;
for(unsigned j = n; j-- > 0;){
double tmp(0.);
for(unsigned i = 0; i <= j; ++i)
tmp += trimat.at(i, j) * x[i];
x[j] = tmp;
}
}
// [[Rcpp::export]]
arma::vec dmvnrm_arma_fast(arma::mat const &x,
arma::rowvec const &mean,
arma::mat const &sigma,
bool const logd = false) {
using arma::uword;
uword const n = x.n_rows,
xdim = x.n_cols;
arma::vec out(n);
arma::mat const rooti = arma::inv(trimatu(arma::chol(sigma)));
double const rootisum = arma::sum(log(rooti.diag())),
constants = -(double)xdim/2.0 * log2pi,
other_terms = rootisum + constants;
arma::rowvec z;
for (uword i = 0; i < n; i++) {
z = (x.row(i) - mean);
inplace_tri_mat_mult(z, rooti);
out(i) = other_terms - 0.5 * arma::dot(z, z);
}
if (logd)
return out;
return exp(out);
}
The use of trimatu
allows to exploit that of the Cholesky
decomposition the covariance matrix is an upper triangular matrix in the
inversion. The dmvnrm_arma_old
is an older version of the function used in
a previous version of this article. The new version differs mainly by
const &
for the input parameters.z
outside the loop.arma::dot
instead of arma::sum
.This turns out to be quite important for the computation times. The
dmvnrm_arma_fast
makes an inplace vector matrix product and exploits
that the matrix is an upper triangular matrix. One can use the
dtrmv
BLAS function instead. It is not available through the Armadillo library
though.
Additionally, we can make use of the OpenMP library to use multiple cores. For the OpenMP implementation, we need to enable OpenMP support. One way of doing so is by adding the required compiler and linker flags as follows:
Sys.setenv("PKG_CXXFLAGS"="-fopenmp")
Sys.setenv("PKG_LIBS"="-fopenmp")
Rcpp version 0.10.5 and later will also provide a plugin to set these variables for us:
// [[Rcpp::plugins(openmp)]]
When used in a package, the standard src/Makevars
supplied by the package
ensures the variable $(SHLIB_OPENMP_CXXFLAGS)
is used. It relies on the R
configuration to automatically add OpenMP support where available.
We also need to set the number of cores to be used before running the
compiled functions. One way is to use detectCores()
from the parallel
package.
cores <- parallel::detectCores(logical = FALSE)
Only two additional lines are needed to enable multicore processing. In this example, a dynamic schedule is used for OpenMP. A static schedule might be faster in some cases. However,this is left to further experimentation.
// [[Rcpp::depends("RcppArmadillo")]]
#include <RcppArmadillo.h>
#include <omp.h>
static double const log2pi = std::log(2.0 * M_PI);
void inplace_tri_mat_mult(arma::rowvec &x, arma::mat const &trimat){
arma::uword const n = trimat.n_cols;
for(unsigned j = n; j-- > 0;){
double tmp(0.);
for(unsigned i = 0; i <= j; ++i)
tmp += trimat.at(i, j) * x[i];
x[j] = tmp;
}
}
// [[Rcpp::export]]
arma::vec dmvnrm_arma_mc(arma::mat const &x,
arma::rowvec const &mean,
arma::mat const &sigma,
bool const logd = false,
int const cores = 1) {
using arma::uword;
omp_set_num_threads(cores);
uword const n = x.n_rows,
xdim = x.n_cols;
arma::vec out(n);
arma::mat const rooti = arma::inv(trimatu(arma::chol(sigma)));
double const rootisum = arma::sum(log(rooti.diag())),
constants = -(double)xdim/2.0 * log2pi,
other_terms = rootisum + constants;
arma::rowvec z;
#pragma omp parallel for schedule(static) private(z)
for (uword i = 0; i < n; i++) {
z = (x.row(i) - mean);
inplace_tri_mat_mult(z, rooti);
out(i) = other_terms - 0.5 * arma::dot(z, z);
}
if (logd)
return out;
return exp(out);
}
Likewise, it is easy to translate dmvnorm
from the mvtnorm
package into Rcpp:
// [[Rcpp::depends("RcppArmadillo")]]
#include <RcppArmadillo.h>
static double const log2pi = std::log(2.0 * M_PI);
arma::vec Mahalanobis(arma::mat const &x,
arma::vec const ¢er,
arma::mat const &cov) {
arma::mat x_cen = x.t();
x_cen.each_col() -= center;
arma::solve(x_cen, arma::trimatl(chol(cov).t()), x_cen);
x_cen.for_each( [](arma::mat::elem_type& val) { val = val * val; } );
return arma::sum(x_cen, 0).t();
}
// [[Rcpp::export]]
arma::vec dmvnorm_arma(arma::mat const &x,
arma::vec const &mean,
arma::mat const &sigma,
bool const logd = false) {
arma::vec const distval = Mahalanobis(x, mean, sigma);
double const logdet = sum(arma::log(arma::eig_sym(sigma)));
arma::vec const logretval =
-( (x.n_cols * log2pi + logdet + distval)/2 ) ;
if (logd)
return logretval;
return exp(logretval);
}
We use each_col
, an appropriate overload of arma::solve
, and for_each
to do the computations without performing additional allocations after the
copy at x_cen = x.t()
.
Now we simulate some data for benchmarking:
set.seed(123)
sigma <- bayesm::rwishart(10,diag(8))$IW
means <- rnorm(8)
X <- mvtnorm::rmvnorm(900000, means, sigma)
And run the benchmark:
print(paste0("Using ",cores," cores for _mc versions"))
[1] "Using 12 cores for _mc versions"
require(rbenchmark)
Loading required package: rbenchmark
benchmark(
dmvnorm = mvtnorm::dmvnorm(X,means,sigma,log=FALSE),
dmvnorm_arma = dmvnorm_arma (X,means,sigma,FALSE),
dmvnrm_arma = dmvnrm_arma (X,means,sigma,FALSE),
dmvnrm_arma_mc = dmvnrm_arma_mc (X,means,sigma,FALSE,cores),
dmvnrm_arma_old = dmvnrm_arma_old (X,means,sigma,FALSE),
dmvnrm_arma_fast = dmvnrm_arma_fast(X,means,sigma,FALSE),
dMvn = dMvn (X,means,sigma),
order="relative", replications=100)[,1:4]
test replications elapsed relative 4 dmvnrm_arma_mc 100 0.875 1.000 6 dmvnrm_arma_fast 100 3.622 4.139 3 dmvnrm_arma 100 5.274 6.027 5 dmvnrm_arma_old 100 7.433 8.495 2 dmvnorm_arma 100 8.649 9.885 7 dMvn 100 12.563 14.358 1 dmvnorm 100 14.637 16.728
Lastly, we show that the functions yield the same results:
truth <- mvtnorm::dmvnorm (X,means,sigma,log=FALSE)
all(
isTRUE(all.equal(truth, drop(dmvnorm_arma (X,means,sigma, FALSE)))),
isTRUE(all.equal(truth, drop(dmvnrm_arma_fast(X,means,sigma, FALSE)))),
isTRUE(all.equal(truth, drop(dmvnrm_arma_mc (X,means,sigma, FALSE)))),
isTRUE(all.equal(truth, drop(dmvnrm_arma (X,means,sigma, FALSE)))),
isTRUE(all.equal(truth, drop(dMvn (X,means,sigma)))))
[1] TRUETweet